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Abstract

A boundary integral method is developed for 3D time-dependent quasistatic thermo-piezoelectricity. This time
domain formulation involves only surface quantities. As a result, volume discretization is completely avoided.

Green's functions are derived by resorting to Radon transform and presented in integral form. Reductions to the
case of isotropic dielectric solid have been worked out in detail and its corresponding solutions expressed in explicit
form are consistent with the existing solutions. 7 2000 Published by Elsevier Science Ltd.
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1. Introduction

Piezoelectric materials exhibit coupling behavior between elastic and electric ®elds and are inherently
anisotropic. As a result, they have been widely used as electromechanical devices. Due to the possibility
in sensing or actuating the deformation of a piezoelectric body by controlling electric ®eld, piezoelectric
materials also have potential applications in smart structures. However, these electromechanical devices
are often placed in a hostile environment and must be designed to withstand thermal transients which
may cause excessive shock, fatigue and rupture (Jiang and Sun, 1999). Hence, the thermal e�ects on the
performance of piezoelectric sensors and actuators are of great interest. A review of existing literature
reveals that studies on piezoelectric materials attracted numerous researchers in the last few years (Sosa,
1991; Pak, 1992; Suo et al., 1992; Lee and Jiang, 1996) and studies on thermo-piezoelectric materials
have received some attention as well. Tiersten (1971) derived non-linear equation of thermo-electro-
elasticity, and Massalas et al. (1994) recently extended Tiersten's theory by including the ``second

International Journal of Solids and Structures 37 (2000) 6155±6171

0020-7683/00/$ - see front matter 7 2000 Published by Elsevier Science Ltd.

PII: S0020-7683(99 )00252-8

www.elsevier.com/locate/ijsolstr

1 Present address: General Electric Company, P.O. Box 100539, Florence, SC 29501.

E-mail address: longzhi.jiang@med.ge.com (L.Z. Jiang).



sound''. Ashisa et al. (1983) considered the piezothermoelastic behavior of an axially heated thin
piezoelectric plate by using the potential function method. Dunn (1993) derived e�ective thermal
expansion and pyroelectric coe�cients of two-phase coupled electroelastic composite materials. Tzou
(1993) presented the ®nite element formulation for a steady state piezothermoelastic solid. Jonnalagadda
et al. (1994) discussed the response of a thin plate constructed of piezothermoelastic layers by choosing
plate theory involving shear deformation.

However, all of the studies on thermo-piezoelectricity cannot be easily extended to analysis of thermal
fracture behavior and micromechanics of such brittle materials as piezoceramics even though it is
important to understand the behavior in order to e�ciently design smart structures (Jiang and Sun,
1999). This motivates the author to study Green's solutions for these materials and further develop a
boundary element method in exploiting fracture and micromechanics. With Green's solutions, the
boundary integral±boundary element method can be formulated and implemented and the
aforementioned analyses can be constructed as in the case of pure elasticity (Mura, 1984).

Before deriving the formulation for thermo-electro-elasticity, a brief review of the existing literature is
appropriate. Some of the relevant work has appeared within the context of dynamical ansiotropic
elasticity and piezoelectricity. Bacon et al. (1979) investigated time-independent Green's function of
anisotropic media thoroughly. Wang and Achenbach (1994) and Wang and Achenbach (1995) derived
time-harmonic Green's solution of anisotropic solid. Analytic expression of Green's solution for general
anisotropic piezoelectric media was derived by Deeg (1980), and corresponding numerical techniques
were explained in detail. Chen (1993) and Chen and Lin (1993) rederived the Green's function by using
the Fourier transform and discussed the possibility of using their solution in numerical methods. For
man-made materials that behave as transversely isotropic media, Lee and Jiang (1994a) obtained closed
form solution by means of retaining the ®nite part of a divergent integral, and Dunn (1994a, 1994b)
simpli®ed Deeg's general solutions and obtained closed form solutions. Norris (1994) obtained Green's
solution for harmonic dynamical piezoelectricity. Khutoryansky and Sosa (1995) presented their
dynamical Green's function for a general anisotropic material, which is represented as an integral over
the slowness surface on an arbitrary piezoelectric body. Ding et al. (1997) derived fundamental solutions
for two-phase transversely isotropic piezoelectric media.

However, a general time-dependent thermo-electro-elastic solid poses formidable mathematical
complexities. It appears that relatively little work has been done regarding the studies of Green's
functions except that Lee and Jiang (1994b) considered Green's function for steady state transversely
isotropic thermo-electro-elastic solid.

In this study, a three-dimensional boundary integral formulation is developed for time-dependent
thermo-piezoelectric solid. The techniques employed in the derivation for Green's function are
elucidated and Green's solutions are presented in integral form. The method operates directly in the
time domain and most importantly, requires no volume discretization. Thus, transient thermo-
piezoelectric analysis may be accomplished from a model consisting exclusively of surface elements. Not
only does this considerably reduce the manpower requirements for modeling, but with the Green's
functions, the unknown quantities near the surface can be captured much more readily than with
domain based methods.

2. Governing equations

The di�erential equations governing the behavior of a thermo-piezoelectric solid under quasistatic
conditions where the initial force is negligible can be written as (Nowacki, 1979; Deeg, 1980)

sij, j � Fi � 0 �1a�
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Di, i ÿ Fe � 0 �1b�
where sij is the stress tensor, Di is the electric displacement vector, Fi is the body force density vector,
and Fe is the body charge density. The repeated su�x obeys the Einstein summation convention. In
terms of entropy balance, the heat conduction equation is

qi, i ÿ T_s� Ft � 0 �1c�

where the over dot represents di�erentiation with respect to time, T is the instantaneous temperature, qi
is the heat ¯ux, s is the entropy density, and Ft is the heat source density.

In what follows, assume T0ÿT
T � 1, we arrive at the linear heat conduction equation as

qi, i ÿ T0 _s� Ft � 0 �1d�
where T0 is the stress-free reference temperature. The constitutive equations are (Nowacki, 1979)

sij � cijklskl ÿ ekijEk ÿ lijy, �2a�

Di � eiklskl � eikEk � piy, �2b�

s � lklskl � pkEk � rcey
T0

�2c�

and Fourier law for anisotropic body becomes

qi � kijQj �2d�

where sij is the strain tensor, Ek is the electric ®eld vector, y is the temperature change from T0, i.e.
y � Tÿ T0, Qi is the temperature gradient, r is the mass density, ce is the speci®c heat, cijkl is the elastic
constant tensor measured at constant ®eld, ekij is the piezoelectric constant tensor, eik is the dielectric
constant tensor measured at constant strain, lij is the thermoelastic constant tensor, pi is the pyroelectric
constant vector and kij is the thermal conductivity tensor. These constants obey the following symmetric
relations (Nye, 1957):

cijkl � cijlk � cjikl � cklij � cjilk, �3a�

ekij � ekji �3b�

eik � eki, kij � kji, lij � lji: �3c�

Gradient equations:

sij � 1

2
�ui, j � uj, i �, �4a�

Ei � ÿf,i �4b�

Qi � y,i �4c�
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where ui and f are the displacement in the ith direction and electric potential, respectively. For a well-
posed problem, appropriate boundary conditions and initial conditions have to be speci®ed.

It is noted that the theory portrayed by Eqs. (1a)±(4c) addresses the full coupling among thermal,
electric and elastic ®elds. In general, these equations must be solved simultaneously. However, from an
engineering viewpoint, it has been determined by a number of researchers in thermoelasticity (e.g. Boley
and Weiner, 1960) that the term involving displacement in Eq. (2c) is negligible. In particular, for some
engineering problems, the general theory may be further simpli®ed by removing the time-dependent
nature of the problem. As a consequence, it is assumed that the loads are applied slowly so that all the
resulting di�usive processes have been ®nished. In other words, the body is presumed to have reached
the steady state. As a result, the heat conduction equation becomes

qi, i � Ft � 0: �5�
In this case, Eqs. (2d), (4c) and (5) can be ®rst solved independently for the temperature ®eld.
Subsequently, displacements and electric potential are determined from rest of the equations with the
known temperature ®eld (Lee and Jiang, 1995). However, in this study, boundary integral formulation
and its Green's functions for the coupled thermo-piezoelectricity are discussed.

3. Boundary integral formulation

Applying the Laplace transform (Courant and Hilbert, 1962) with respect to time to Eqs. (1a), (1b)
and (1d) leads to

�sij, j � �Fi � 0, �6a�

�Di, i ÿ �Fe � 0 �6b�

�qi, i ÿ T0b�s� �Ft � 0 �6c�
where b is the Laplace transform variable and s(0) is assumed to be zero without loss of generality. The
constitutive relations in the transform domain yield

�sij � cijkl �skl ÿ ekij �Ek ÿ lij �y, �7a�

�Di � eikl �skl � eik �Ek � pi �y, �7b�

�s � lkl �skl � pk �Ek � rce �y
T0

�7c�

�qi � kij �y,j: �7d�
In the transform domain, the boundary integral equation may be derived from the weighted residual
statement as follows (Lee and Jiang, 1994a, 1994b):�

O

ÿ
�sij, j � �Fi

�
�u�i dO � 0 �8�
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where �u�i is the displacement in transform domain corresponding to the weighting ®eld. By using
integration by parts, divergence theorem and constitutive equations, we obtain the following expression:�

O
�s�kl, l �uk dO�

�
O

�D
�
m, m

�f dO�
�
G
nj �sij �u�i dGÿ

�
G
nj �s�ij �ui dG�

�
O

�Fi �u
�
i dOÿ

�
O

�Fe
�f
�

dO

�
�
G
nm �Dm

�f
�

dGÿ
�
G
nm �D

�
m

�f dG�
�
O

�
pm �E

�
m

�yÿ pm �Em
�y
��

dO�
�
O

�
lij �s�ij �yÿ lij �sij �y

��
dO

� 0: �9�

In order to eliminate the last two volume integrals as required in boundary integral method, we apply
the weighting ®eld and actual ®eld to the linear heat conduction equation and obtain

kij �y
�
,ij ÿ T0b �s� � �F

�
t � 0 �10a�

kij �y,ij ÿ T0b �s� �Ft � 0: �10b�
After somewhat lengthy manipulation, such as subtracting Eq. (10a) multiplied by y from Eq. (10b)
multiplied by y�, integrating by parts, using Eq. (7c) and taking the integration over the domain
occupied by the piezoelectric solid, we arrive at�

O

�
pm �E

�
m

�yÿ pm �Em
�y
��

dO�
�
O

�
lij �s�ij �yÿ lij �sij �y

��
dO

� 1

bT0

� �
O

�
�F
�
t
�yÿ �Ft

�y
��

dOÿ
�
G

ÿ
�q� �yÿ �qy�

�
dG
�
: �11�

Recall the property of the inverse Laplace transform, i.e.

Lÿ1
ÿ
b �f
�
� _f where Lÿ1

ÿ
�f
�
� f: �12�

Note the convolution integral, namely,

a� b �
�t
0

a�tÿ t�b�t� dt �
�t
0

a�t�b�tÿ t� dt: �13�

Substituting Eq. (11) into Eq. (9) and applying the inverse Laplace transform to Eq. (9), we arrive at�
O

_s�kl, l � uk dO�
�
O

_D
�
m, m � f dO� 1

T0

�
O
F�t � y dG�

�
O
fi � _u�i dOÿ

�
O
Fe � _f

�
dO

ÿ 1

T0

�
O
Ft � y�i dGÿ

�
G
ti � _u�i dG�

�
G
o� _f

�
i dGÿ 1

T0

�
O
q� y� dG

ÿ
�
G

_t
�
i � ui dG�

�
G

_o� � f dGÿ 1

T0

�
O
q� � y dG � 0

where ti � njsji, q � ÿkijy,inj and o � ÿnjDj: In order to make the ®rst three volume integrals vanish,
we consider the weighting ®eld as an in®nite piezoelectric body subjected to unit forces, electric charge
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and pulse heat source equal to the following three states separately.

F �i � d
�
~x, ~x

�
H�t�dijej, F�e � 0, F�t � 0, �15a�

F �4 � 0, F�e � d
�
~x, ~x

�
H�t�, F�t � 0 �15b�

F �5 � 0, F�e � 0, F�t � d
�
~x, ~x

�
d�t� �15c�

where d is the Dirac delta function and H(t ) is the Heaviside step function. It is noted that the heat
source with respect to time t is subjected to the Dirac delta function while the other two loads are
subjected to the step function. It is purely from the mathematical consideration and can be easily
explained by noting that F�t in the integral does not involve time derivative while both _s�kl, l and _D

�
m, m

do. For the sake of brevity, let us assume that there are no body forces, volume charge or heat source in
the actual boundary value problem. The boundary integral equation for coupled thermo-piezoelasticity
then becomes

UI

�
~x
�
�
�
G

_t
�
Ij

�
~x, ~x

�
� uj�~x� dGÿ

�
G

_o�I

�
~x, ~x

�
� f�~x� dG� 1

T0

�
G
q�I

�
~x, ~x

�
� y�~x� dG

�
�
G

_u�Ij

�
~x, ~x

�
� tj�~x� dGÿ

�
G

_f
�
I

�
~x, ~x

�
� o�~x� dG� 1

T0

�
G
y�I

�
~x, ~x

�
� q�~x� dG �16�

where UI � ui �I � 1, 2, 3�, U4 � ÿf and U5 � ÿy=T0: u
�
ij represents the displacement in jth direction at

a ®eld point ~x due to a point force in the ith direction at the source point ~x interior to G, u�4i denotes the
ith displacement at x due to a point electric charge ~x, u�5i stands for the ith displacement at ~x due to
pulse heat source acting at time zero and at point ~x, and so on. Eq. (16) can be viewed as a generalized
Somigliana's identity for coupled time-dependent thermo-piezoelectricity, and, as such, is an exact
statement for the interior displacements, electric potential and temperature. The process of obtaining
Eq. (16) for a position on the boundary is not trivial due to the singular nature of the kernel functions.
However, the singularity re¯ecting the smoothness of boundary can be obtained in explicit form for
simple geometric con®guration and, in general, to be determined by using rigid body motion as in the
static anisotropic elasticity (Jiang and Lee, 1994). It should be noted that the integrals are Cauchy
principal valued.

4. Green's solution for fully coupled thermo-piezoelectric media

It is customary, as in Eq. (16), that the quantities re¯ecting Green's function are asterisked in the
boundary element realm. For simplicity, however, the asterisk will be omitted in what follows. After
somewhat lengthy manipulation, such as substituting Eqs. (2a)±(2d) into Eqs. (1a)±(1d) and using Eqs.
(3a)±(4c), we obtain a set of equations in terms of displacements, electric potential, temperature and
entropy density as�

cijkl � T0lijlkl
rce

�
uk, lj �

�
eijl ÿ T0lijpl

rce

�
f,lj ÿ

T0lij
rce

s,j � Fid
�
~x, ~x

�
H�t� � 0, �17a�
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�
elij ÿ T0lijpl

rce

�
ui, jl ÿ

�
eik ÿ T0pipk

rce

�
f,ik �

T0pi
rce

s,i ÿ Fed
�
~x, ~x

�
H�t� � 0 �17b�

kijy,ij ÿ T0 _s� Ftd
�
~x, ~x

�
d�t� � 0: �17c�

Due to its conciseness, the Radon transform is employed here for carrying out the derivation. A detail
discussion of the Radon transform is given in Courant and Hilbert (1962) and Gelfand and Shilow
(1964). Also, a number of its properties are presented in Bacon et al. (1979), Deans (1983), Deeg (1980)
and Wang and Achenbach (1993). Using the notation presented there, the Radon transform of a
function f �~x�, which can be displacement, electric potential, temperature or entropy density, is de®ned as

f̂ � f̂
ÿ
a, ~z

�
�
�
~z�~x�a

f�~x� ds�~x� �18a�

where ~z and a are the transform space variables and f̂ is the integral of f over the plane de®ned by ~z �
~x � a: For simplicity, ~z is chosen to be a unit vector.
The inverse Radon transform for a three-dimensional domain is given by

f�~x� � ÿ 1

8p2

�
j~zj�1

@ 2 f̂
ÿ
a, ~z

�
@a2

j~z�~x�a ds�~z�: �18b�

The integral is carried out over the surface of the unit sphere j~zj � 1: Applying the Radon transform to
both sides of Eqs. (17a) and (17b) leads to�

cijkl � T0lijlkl
rce

�
zjzlû

00
k �

�
eijl ÿ T0lijpl

rce

�
zjzlf̂

00 ÿ T0lij
rce

zjŝ
0 � Fid�a�H�t� � 0,

�
elij ÿ T0lijpl

rce

�
zlzjû

00
i ÿ

�
eik ÿ T0pipk

rce

�
zizkf̂

00 ÿ T0pi
rce

ziŝ
0 ÿ Fed�a�H�t� � 0: �19�

Solving the above two equations simultaneously for û 00k and f̂
00
in terms of ŝ 0 yields

û 00k � ÿckŝ 0 ÿ hkiFid�a�H�t� ÿ dkFed�a�H�t� �20a�

f̂
00 � ÿeŝ 0 ÿ piFid�a�H�t� ÿ qFed�a�H�t� �20b�

where

bik �
�
cimkn � T0

rce
limlkn

�
zmzn � 1

a

"
eijlemnk ÿ

�
T0

rce

�2

lijlknplpm

#
zjznzlzm, �21a�

a �
�
eik ÿ T0pipk

rce

�
zizk, �21b�

hki � �bik �ÿ1, �21c�
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ck �
�
ÿ 1

a
eijlpmzjzlzm � T0

arce
lijplpmzjzlzm ÿ T0lin

rce
zn

�
hki, �21d�

di � ÿ1
a

�
eijlzjzl ÿ T0

rce
lkjplzjzl

�
hik, �21e�

e � 1

a

�
T0pizi
rce

� ck

�
eilk � T0

rce
lklpi

�
zizl

�
, �21f�

pi � 1

a

�
emlk � T0

rce
lklpm

�
zmzlhki �21g�

q � 1

a

�
1�

�
eijk � T0

rce
lkjpi

�
zizjdk

�
: �21h�

Applying the Radon transform to the constitutive relation (2c) and taking the derivative with respect to
a twice, we arrive at

ŷ
00 �

T0

�
ŝ 00 ÿ lijzjû

000
i � pizif̂

000�
rce

: �22�

Substituting û 00i and f̂
00
i into the above equation leads to the relation between ŷ

00
and ŝ 00 as

ŷ
00 � gŝ 00 � viFid

0�a�H�t� � wFed
0�a�H�t� �23�

where

g � T0

rce
�1� lmncnzm ÿ pmzme�

vi � T0

rce
�lkmhkizm ÿ pmzmpi �

w � T0

rce

ÿ
lkjzjdk ÿ pmzmq

�
: �24�

Applying Radon transform to Eq. (17c) leads to

kijzizjŷ
00 ÿ T0

_̂s� Ftd�a�d�t� � 0: �25�
As a result, substituting Eq. (23) into Eq. (25), the propagation equation in terms of entropy density is
expressed in the following form

_̂sÿ Aŝ 00 � Ft

T0
d�a�d�t� � BiFid

0�a�H�t� � CFed
0�a�H�t� �26�

where
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A � kijzizjg

T0

Bk � kijzizjvk
T0

C � kijzizjw

T0
: �27�

It is observed in Eq. (26) that the full coupling among thermal, electric and elastic ®elds occurs. From
the computational viewpoint, once ŝ 00 is evaluated, temperature, displacement and electric potential will
be obtained using Eqs. (20a), (20b) and (23), respectively. In what follows, the expressions of these
quantities corresponding to each loading condition are discussed separately. First, consider the e�ect of
a unit force in the ith direction acting at the point ~x and beginning at time zero. Eq. (26) becomes

_̂sÿ Aŝ 00 � Bid
0�a�H�t�: �28�

Its solution is well known (e.g. Carslaw and Jaeger, 1959)

ŝ�a, t� � ÿ Bi

2A
erf

� a

2
������
At
p

�
�29a�

where erf is the error function (Abramowitz and Stegun, 1964) and de®ned in the following form:

erf�x� � 2���
p
p

�x
0

exp

�
ÿ z2

2

�
dz: �29b�

Substituting ŝ in Eq. (29a) into Eqs. (20a), (20b) and (23) leads to the second-order derivative for
displacements, electric potential and temperature in the transform domain as

û 00ij �
Bicj

4A3=2
��
t
p exp

�
ÿ a2

4At

�
ÿ hjid�a�H�t�

f̂
00
i �

Bif

4A3=2
��
t
p exp

�
ÿ a2

4At

�
ÿ qid�a�H�t�

ŷ
00
i �

Biga

8A5=2
����
t3
p exp

�
ÿ a2

4At

�
� vid

0�a�H�t� �30�

where

f � 1

a

��
emnk � T0lknpm

rce

�
zmznck � T0pmzm

rce

�

qi � 1

a

�
emnk � T0lknpm

rce

�
zmznhki
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vi � T0

ce
�lmnznhmi ÿ pkzkqi �: �31�

Next, the in®nite space response to a unit charge acting at ~x beginning at time zero is presented. Since
such derivation presents no elements of novelty, we dispense with details and merely list the results:

û 004i �
Cci

4A3=2
��
t
p exp

�
ÿ a2

4At

�
ÿ did�a�H�t�

f̂
00
4 �

Ce

4A3=2
��
t
p exp

�
ÿ a2

4At

�
ÿ qd�a�H�t�

ŷ
00
4 �

agC

8A5=2
����
t3
p exp

�
ÿ a2

4At

�
� wd 0�a�H�t�: �32�

Finally, the in®nite space response to a unit pulse heat source acting at time zero, at the point ~x within
three-dimensional solid is discussed in a similar way. By solving the following equation

_̂sÿ Aŝ 00 � 1

T0
d�a�d�t�, �33�

we arrive at (Carslaw and Jaeger, 1959)

ŝ�a, t� � 1

T0

�����������
4pAt
p exp

�
ÿ a2

4At

�
: �34�

As a result, the derivatives of Green's function components in transform domain are expressed in the
following forms

û 005i �
cia

4pT0�At�3=2
exp

�
ÿ a2

4At

�

f̂
00
5 � ae

4
���
p
p

T0�At�3=2
exp

�
ÿ a2

4At

�

ŷ
00
5 �

a2g

8
���
p
p

T0A5=2t3=2
exp

�
ÿ a2

4At

�
ÿ g

4
���
p
p

T0�At�3=2
exp

�
ÿ a2

4At

�
: �35�

It should be noted in comparison with thermoelasticity (Rice and Cleary, 1976; Rudnicki, 1987) that the
terms with exponential function carry the solution from isentropic behavior at very short time to a ®nal
steady state form at very long period. The behavior will be easily demonstrated in the explicit form for
the case of isotropic dielectric solid. In order to ®nd uij, fi and yi, it is necessary to apply the inverse
Radon transform de®ned in Eq. (18b) to Eqs. (30), (32) and (35). As a result, the responses to the above
three loading conditions are listed as
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�
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0
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t
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�
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0
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�
~xÿ ~x

�i2
4A�~z�t

1A
ds�~z� � H�t�

8p2r2

� 2p

0

@w

@b
dc

u5i

�
~xÿ ~x

�
� ÿ 1

8p2

�
jzj�1

Ci~z �
�
~xÿ ~x

�
4
���
p
p ����

t3
p

A3=2�~z�exp
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�
~xÿ ~x
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1A
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�
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�
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�
4
���
p
p ����

t3
p

A3=2�~z�exp

0@ÿ
h
~z �
�
~xÿ ~x

�i2
4A�~z�t

1A
ds�~z�

y5
�
~xÿ ~x

�
� ÿ 1

8p2

�
jzj�1

h
~z �
�
~xÿ ~x

�i2
gÿ 2gAt

8
���
p
p

t5=2A5=2�~z� exp

0@ÿ
h
~z �
�
~xÿ ~x

�i2
4A�~z�t

1A
ds�~z� �36�

where r � j~xÿ ~xj, ~z � �~xÿ ~x� � rb, and b and c are shown in Fig. 1. During the derivation, the following
identity was used�

d 0�xÿ x 0 �f�x� dx � ÿ
�
d�xÿ x 0 �@ f�x�

@�x� dx: �37�

It is noted in Eq. (36) that the exponential terms carry the transient behavior at very short time and
steady state at very long time, while the integrals de®ned by the circle c have similar behavior to the
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static case and depends on the orientation of vector ~xÿ ~x and not on the magnitude of 1=j~xÿ ~xj (Deeg,
1980). Hence, it should not cause any numerical problem.

5. Reduced Green's function for isotropic dielectric solid

As an illustration of the results established so far, also as a check of the solutions, the details are
worked out for an isotropic dielectric solid where the piezoelectricity and pyroelectricity vanish. As a
consequence, the material constant tensors are simpli®ed as

cijkl � ldijdkl � m
ÿ
dikdjl � dildjk

�
, kij � kdij, eij � edij

lij � �3l� 2m�a0dij

eijk � 0, pi � 0 �38�
where l and m are the Lame's constants, k is the thermal conductivity, a0 is the coe�cient of thermal
expansion, e is the dielectric constant. It is assumed that strain and electric ®eld are unable to produce
entropy, that is, s � �rcey�=T0: Hence,

A � kzizi
rce

, Bi � C � 0: �39�

Eqs. (20a), (20b) and (23) become

û 00k � ÿckŝ 0 ÿ hkiFid�a�H�t�, �40a�

f̂
00
4 � ÿqFed�a�H�t� �40b�

ŷ
00
5 �

T0ŝ
00

rce
�40c�

Fig. 1. Illustration of variables used in the evaluation of surface integrals.
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where

hki � 1

mzmzm

�
dki ÿ zizk

2�1ÿ n�zmzm
�

ck � ÿ�3l� 2m�a0
rcemzmzm

�
dki ÿ zizk

2�1ÿ n�zmzm
�

q � 1

ezmzm
�41�

where n is the Poisson's ratio and n � l�1ÿ 2m�=2m: Applying the inverse Radon transform to Eq. (40b)
yields

f4

�
~xÿ ~x

�
� 1

8p2

�
jzj�1

1

ezmzm
d�a�H�t� ds�~z�: �42�

Using the result given in Appendix A (Eq. (A10)), we obtain

f4

�
~xÿ ~x

�
� 1

4per
H�t� �43�

where r � j~xÿ ~xj: If f4 is normalized by e, the solution is exactly the same as that in the three-
dimensional potential problem (Courant and Hilbert, 1963). From Eqs. (40a), (40b) and (41), we obtain

ŷ
00
5 �

1

rce

1�����������
4pAt
p 1

4p2t2
�a2 ÿ 2At� exp

�
ÿ a2

4At

�

û 005k �
�3l� 2m�a0

rcemzmzm�2At�
�����������
4pAt
p azi

�
dki ÿ zizk

2�1ÿ n�zmzm
�

exp

�
ÿ a2

4At

�

û 00ij �
1

�2At� �����������
4pAt
p a

�
dij ÿ zizj

2�1ÿ n�zmzm
�

exp

�
ÿ a2

4At

�
: �44�

Taking the inverse Radon transform and resorting to the results from Eqs. (A11) to (A13) yield

y5 � 1

8prk
�Z���
p
p

t
exp

�
ÿ �Z2

4

�

u5i � 1

4p
�3l� 2m�a0
k�l� 2m�

(
xi

r

1

�Z2t

"
�Z2���
p
p exp

�
ÿ �Z2

4

�
ÿ erf

�
�Z
2

�#)

uij � 1

16pr
1

m�1ÿ n�
�
xi

r

xj

r
� �3ÿ 4m�dij

�
H�t� �45�

where i, j � 1, 2, 3 and where �Z � r=
�������������
kt=rce

p
: The other components vanish due to the lack of full
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coupling. It is observed that the solutions are exactly the same as those given by Dargush and Banerjee
(1990).

6. Conclusions

The ``displacement±electric potential±temperature'' type boundary integral equation for general three-
dimensional thermo-piezoelastic problem is presented. The corresponding Green's solutions are obtained
in integral form. The method may prove to be quite attractive primarily for two reasons. First, no
volume discretization is required. As a result, signi®cant savings in modeling e�ort are possible,
particularly for a bulky body. The second attractive feature involves the ability of the boundary-only
approach to capture the steep thermal gradients that are often associated with severe transients. The
reduction to the isotropic dielectric case shows the solution's consistency with the existing ones.
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Appendix A

The evaluation of the inverse Radon transform greatly depends on the manipulation of the surface
integral over a unit sphere. By using the algorithm illustrated by Deeg (1980) and Wang and Achenbach
(1993), the process to evaluate the surface integral

f�~x� � ÿ 1

8p2

�
j~zj�1

f̂
ÿ
a, ~z

�
ds�~z� �A1�

is outlined below.
As shown in Fig. 1, let ~e be a unit vector in the direction of ~x: Thus,

~x � r~e, �A2a�
or

ei � xi

r
, �A2b�

r � j~xj: �A2c�
~d is a unit vector and

~d � ~e � 0: �A3�
In the ~dÿ ~e plane, ~z is decomposed into

~z � a ~d� b~e �A4�
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where

����������������
a2 � b2

p
� 1: �A5�

As a result, a � ~z � ~x � rb: It is noted that b ranges from ÿ1 re¯ecting the negative ~x direction to 1.
Furthermore, ~d may be expressed in terms of another parameter c: On the plane normal to ~e,

~d � cos c~p� sin c~q �A6�

where ~p, ~q and ~e form a right-hand coordinate. Hence,

~z � r
��������������
1ÿ b2
p�����������������
x 2
1 � x 2

2

q �
x2

r
cos cÿ x1

r

x3

r
sin c, ÿ x1

r
cos cÿ x2

r

x3

r
sin c,

x 2
1 � x 2

2

r2
sin c

�

� b

�
x1

r
,
x2

r
,
x3

r

�
: �A7�

As a result, the surface integral can be expressed in terms of b and c as follows

f�~x� � ÿ 1

8p2

� 2p

0

�1
ÿ1

�f
ÿ
rb, ~z�b, c�� dbdc: �A8�

Using the property of Dirac function, d�a� � d�rb� � �1=r�d�b�, we have

f�~x� � ÿ 1

8p2

�
j~zj�1

f̂
ÿ
a, ~z

�
d�a� ds�~z� � ÿ 1

8p2r

� 2p

0

�f�0, �z�0, c�� dc: �A9�

Towards the end, the integrals used in the section for isotropic dielectricity are derived as follows

�1�:
�
j �zj�1

d�a� ds�z� �
� 2p

0

�1
ÿ1

d�rb� dbdc � 2p
r

�2�:
�
j �zj�1
�a2 ÿ 2 �At� exp

�
ÿ a2

4At

�
ds�z� �

� 2p

0

�1
ÿ1
�r2b2 ÿ 2 �At� exp

�
ÿ a2

4 �At

�
dbdc �A10�

where �A � k=�rce�: It is easily shown by using integration by parts that the above equation is

� ÿ8p
� �At�3=2
r

�Z exp

�
ÿ �Z2

4

�
�A11�

where �Z�r=
������
�At

p
� r=

�������������
kt=rce

p
:
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where erf��Z=2� � �2= ���
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